
  

 

By Paul Naidoo, EOLAS 

Peeking into the ‘black box’ with Explainable AI (XAI) 

Artificial Intelligence (AI) allows us to draw insight from complex, multi-modal data in ways 
that a classical analysis simple cannot.  However, these abilities come at the expense of 
increasing model complexity, and obfuscation of what is driving the decisions/conclusions 
these models reach.  This “black box” effect means that understanding their decision-
making processes becomes increasingly challenging. This is where Explainable AI (XAI) 
comes into play. 

Explainable AI (sometimes called Interpretable ML) refers to techniques and methods that 
make the behaviour and decisions of AI systems more transparent and understandable to 
humans. By providing insights into how AI models arrive at their conclusions, XAI helps 
bridge the gap between complex algorithms and human comprehension. 

Increasing Trustworthiness 

As well as empowering developers with an understanding of how their model is working,  one 
the greatest benefits of XAI is its ability to enhance the trustworthiness of AI systems. It 
achieves this by increasing: 

1. Transparency: XAI provides insights into the inner workings of AI models, allowing 
users to see how decisions are made. This transparency helps users feel more 
confident in the system's reliability and fairness. 

2. Accountability: With explainable AI, it becomes easier to identify and address errors 
or biases in the decision-making process. This accountability ensures that AI 
systems can be held to ethical standards and regulatory requirements. 

3. User Confidence: When users understand how AI systems operate, they are more 
likely to trust and adopt these technologies. Clear explanations can alleviate 
concerns about the unpredictability or opacity of AI decisions. 

 

  



  

 

 

XAI methods 

Explainable AI is a growing field.  The following is an (non-exhaustive) summary of some key 
Explainable AI techniques, indications of when you might prefer to use each and links to free 
and open-source Python modules which can be used for each analysis.  Note that there may 
be alternative modules for each method.  Those listed simply provide a starting point for the 
reader. 
 

1. LIME (Local Interpretable Model-agnostic Explanations) 

Summary: LIME explains individual predictions by approximating the model locally with an 
interpretable model. It perturbs the input data and observes the changes in predictions to 
understand the model's behaviour.  

When to Use: LIME is useful when you need to explain specific predictions of any black-box 
model, especially when dealing with tabular data or text. 

Module: LIME 

 

2. SHAP (SHapley Additive exPlanations) 

Summary: SHAP values are based on cooperative game theory and provide a unified 
measure of feature importance. It calculates the contribution of each feature to the 
prediction by considering all possible feature combinations.  

When to Use: SHAP is preferred when you need consistent and fair explanations across 
different models and datasets. It’s particularly useful for understanding global feature 
importance and interactions. 

Module: SHAP 

 

  

https://github.com/marcotcr/lime
https://github.com/shap/shap


  

 

3. Grad-CAM (Gradient-weighted Class Activation Mapping) 

Summary: Grad-CAM visualizes the regions of an input image that are important for the 
model’s prediction by using the gradients of the target output with respect to the last 
convolutional layer.  

When to Use: Grad-CAM is ideal for explaining predictions of convolutional neural networks 
(CNNs) in image classification tasks. 

Module: grad-cam 

4. Integrated Gradients 

Summary: This technique attributes the prediction of a deep network to its input features 
by integrating the gradients of the output with respect to the input along a path from a 
baseline to the input.  

When to Use: Integrated Gradients are useful for models where you need to understand the 
contribution of each input feature, especially in scenarios where baseline comparisons are 
meaningful. 

Module: captum (pytorch), tf-keras-vis (keras) 

 

5. Counterfactual Explanations 

Summary: Counterfactual explanations provide insights by showing how the input data 
needs to be modified to change the prediction. They answer "what-if" questions by 
identifying minimal changes to the input that would alter the output.  

When to Use: Use counterfactual explanations when you need actionable insights or when 
you want to understand the decision boundaries of the model. 

Module: DiCE 

 

  

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/keisen/tf-keras-vis
https://github.com/interpretml/DiCE


  

 

Choosing the Right Technique 

• For Local Explanations: Use LIME or Anchors when you need to explain individual 
predictions. 

• For Wholistic Explanations: Use SHAP to understand overall feature importance 
and interactions. 

• For Image Data: Use Grad-CAM for visual explanations of CNNs. 

• For Deep Networks: Use Integrated Gradients to attribute predictions to input 
features. 

• For Actionable Insights: Use Counterfactual Explanations to understand how to 
change outcomes. 

   


